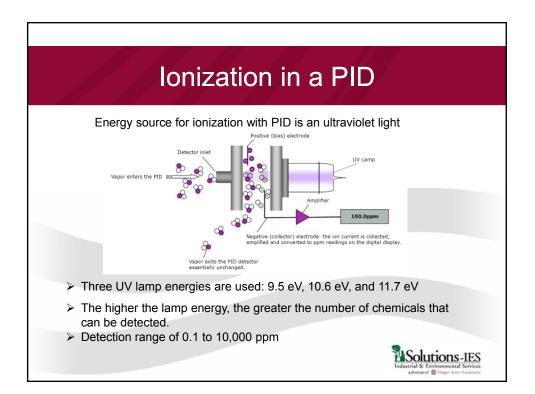
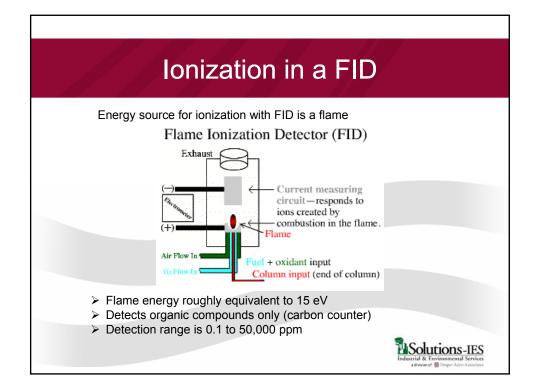
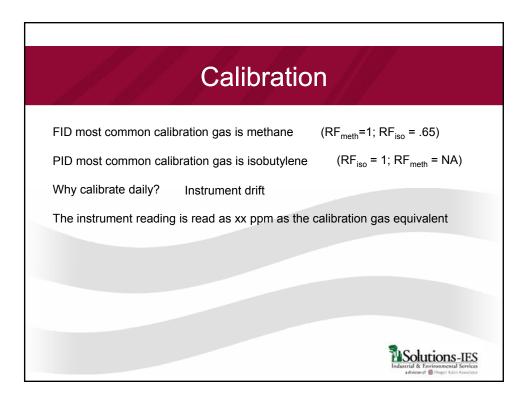
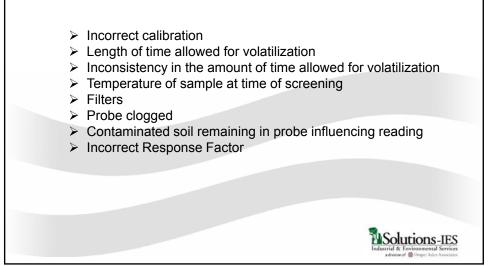
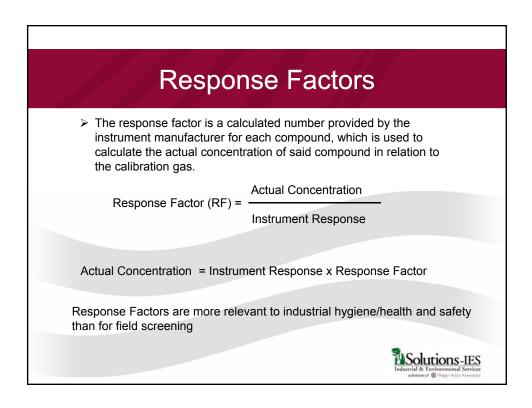

PID=Photo Ionization Detector

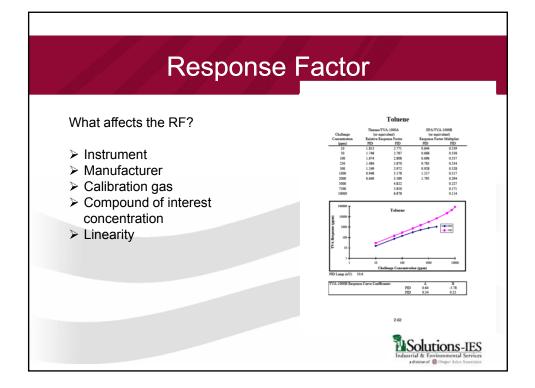




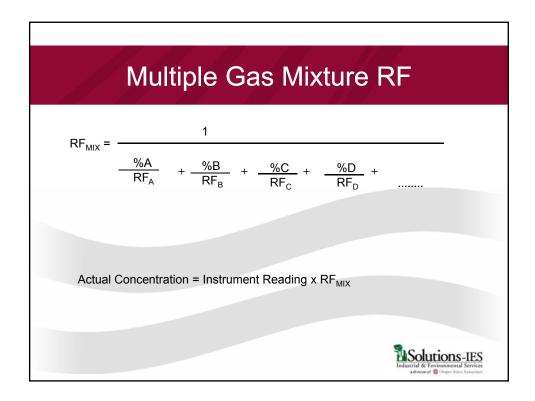


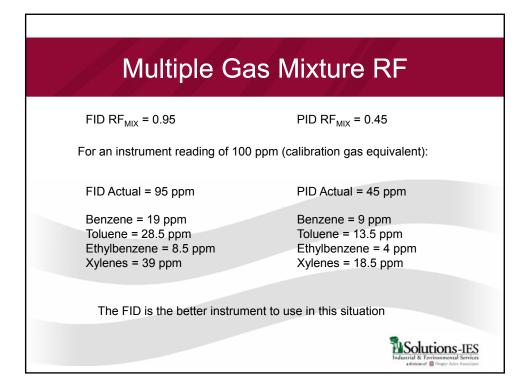


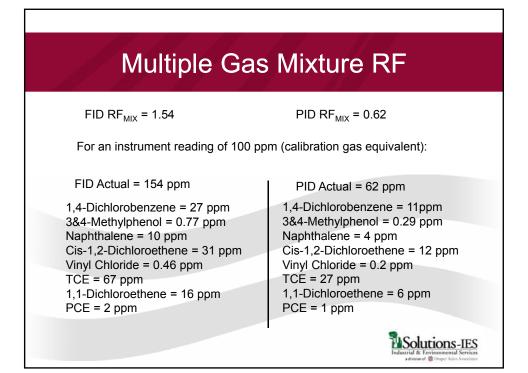

ET ET				nalysis	
Compound	IE	FID	PID 9.5 eV	PID 10.6 eV	PID 11.7 eV
Methane (CH ₄)	12.98	х			
Isobutylene (C ₄ H ₈)	9.24	x	x	x	х
Hydrogen sulfide (H ₂ S)	10.46			x	х
Trichloroethylene (C_2HCl_3)	9.47	x	x	x	x
Ammonia (NH ₃)	10.2			x	х
Benzene (C ₆ H ₆)	9.25	х	x	x	х
Chloroform (CHCl ₃)	11.37	х			х
Chrysene (C ₁₈ H ₁₂)	7.59	х	x	x	х
Sulfur Dioxide (SO ₂)	12.3				
Water (H ₂ 0)	12.59				


г

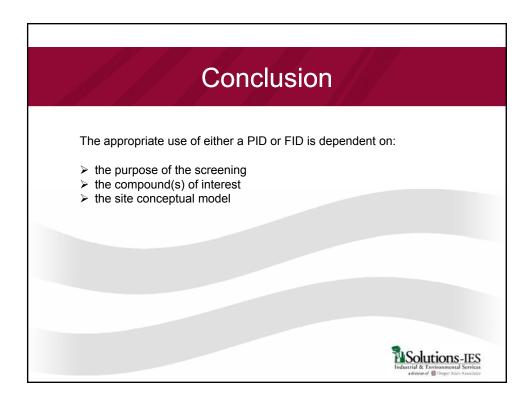
Correlations?					
Headspace vs Soil					
Sample	Location	FID	PID	DRO	GRO
SS-1-1	Greenville, NC		5.8	<6.1	
SS-2-3	Greenville, NC		1.0	25.9	
SS-4-1	Greenville, NC		13.6	1260	
1-2-1	Greenville, NC	4.9	40	686	
3-1	Greenville, NC	10	6.6	654	
SB-1	Rowan County, NC	90,800		3440	5170
SB-2	Rowan County, NC	26,400		3220	5230
SB-7	Rowan County, NC	70,200		528	5360
61-3	Piedmont		312	4005	1106
61-5	Piedmont		701	149.5	<1.1






Single Gas RF						
Compound	IE	FID	9.5eV	10.6eV	11.7eV	
Benzene	9.25	0.7	0.55	0.47	0.60	
TCE	9.47	2.8	0.62	0.54	0.43	
FID: 100 ppm × PID: 100 ppm > TCE		F	ID the better in	nstrument		
FID: 100 ppm × PID: 100 ppm ×				ID with a 9.5 e etter instrume		
				Tinduser Industr	Colutions-IES	

Compound	FID	9.5eV	10.6eV	11.7eV
Benzene	0.7	0.55	0.47	0.6
Ethylbenzene	1.0	0.52	0.65	0.51
Toluene	0.9	0.54	0.45	0.51
Xylenes	1.2	0.5	0.43	0.4
E	enzene = 20% thylbenzene = oluene = 30% (ylenes = 40%	10%		


Cecil Field						
Compound	Concentration (µg/L)	% of Mix	OEL (ppm)	RF _{FID}	RF _{PID(10.6eV)}	
1,4-Dichlorobenzene	216	17.7	75	0.7	0.64	
3&4-Methylphenol	5.7	0.5	2.3	4.8	1.1	
Naphthalene	76.2	6.2	10	0.9	0.42	
Cis-1,2- Dichloroethene	246	20.1	200	2.6	0.8	
Vinyl Chloride	4.1	0.3	1	2.57	2.0	
TCE	534	43.6	100	2.8	0.54	
1,1-Dichloroethene	126	10.3	NA	1.23	1.0	
PCE	15.6	1.3	100	1.79	0.7	
				1s	olutions-IES	

Multiple Gas Mixture RF					
FID RF Vinyl Chloride OEL = 1 ppm 1 ppm = 0. TCE OEL = 100 ppm 100 ppm =		PID RF _{MIX} = 0.62 1 ppm = 0.2 x 5 100 ppm = 27 x 3.7			
Actual Concentration = Instrument Reading x RF _{MIX} Instrument Reading = <u>Actual Concentration</u> RF _{MIX}					
Actual FID = 154 x 2.17= 334 ppm Actual FID = 154 x 1.5 = 231 ppm	Actual PID Actual PID	= 62 x 5 = 310 ppm = 62 x 3.7 = 229 ppm			
Inst FID = 334/1.54 = 217 ppm Inst FID = 231/1.54 = 150 ppm		310/.62 = 500 ppm 229/.62 = 370 ppm			
		Solutions-IES Industrial & Environmental Services a division of Disper Adm Associator			

PID/FID Comparison

Parameter	PID	FID
Ease of Use; Size and Weight	Handheld, lightweight	Bulky, heavy, requires hydrogen cartridges
Linearity	Better at lower concentrations	Good linearity throughout range
Range	0.1 to 10,000ppm	0.1 to 50,000 ppm
Compound Detection	Organic vapors and gases; some inorganic gases	Organic vapors and gases
Compound Selectivity	Increases with low energy lamps and decreases with high energy lamp, responds to functional groups	Broad sensitivity, responds to carbon chain length
Inert Matrix Gas	Measures directly in inert gas matrix	Requires oxygen presence
Sample Collection	Non-destructive	Destructive
Use	Personnel monitoring and fugitive emissions	Fugitive emissions
Reliability	Reliable, low cost, long lamp life	"Flame out" issues
Intrinsic Safety	Intrinsically safe with cold operation	Explosion-proof using a flame arrestor to isolate hot flame
		Solutions-IES

